Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dent Res ; 96(7): 798-806, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28208029

RESUMO

Hyposalivation contributes to dental caries, periodontitis, and microbial infections. Additionally, it impairs activities of daily living (e.g., speaking, chewing, and swallowing). Treatments for hyposalivation are currently limited to medications (e.g., the muscarinic receptor agonists pilocarpine and cevimeline) that induce saliva secretion from residual acinar cells and the use of saliva substitutes. However, given that these therapies provide only temporary relief, the development of alternative treatments to restore gland function is essential. Previous studies demonstrated that laminin 1 (L1) is critical for intact salivary cell cluster formation and organization. However, the full L1 sequence is not suitable for clinical applications, as each protein domain may contribute to unwanted effects, such as degradation, tumorigenesis, and immune responses that, when compounded, outweigh the potential benefits provided by their sum. Although the L1 peptides YIGSR and A99 linked to fibrin hydrogels (FHs) promote intact salivary epithelial formation in vitro, little is known about their role during salivary gland regeneration in vivo. Therefore, the goal of this study was to demonstrate whether L1 peptides conjugated to FHs promote tissue regeneration in a wound-healing model of mouse submandibular glands (mSMGs). Our results suggest that YIGSR-A99 peptides, chemically conjugated to FHs and applied to wounded mSMGs in vivo, formed new organized salivary tissue. In contrast, wounded mSMGs treated with FHs alone or in the absence of a scaffold showed disorganized collagen formation and poor tissue healing. Together these studies indicate that damaged salivary gland tissue can grow and differentiate when treated with FHs containing L1 peptides.


Assuntos
Fibrina/farmacologia , Hidrogéis/farmacologia , Laminina/farmacologia , Glândula Submandibular/efeitos dos fármacos , Glândula Submandibular/fisiologia , Animais , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/farmacologia , Modelos Animais de Doenças , Matriz Extracelular/fisiologia , Hidrogéis/síntese química , Camundongos , Microscopia Confocal , Regeneração , Coloração e Rotulagem , Alicerces Teciduais , Cicatrização/efeitos dos fármacos
2.
J Dent Res ; 94(11): 1610-7, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26285810

RESUMO

Saliva plays a major role in maintaining oral health. Patients with salivary hypofunction exhibit difficulty in chewing and swallowing foods, tooth decay, periodontal disease, and microbial infections. At this time, treatments for hyposalivation are limited to medications (e.g., muscarinic receptor agonists: pilocarpine and cevimeline) that induce saliva secretion from residual acinar cells as well as artificial salivary substitutes. Therefore, advancement of restorative treatments is necessary to improve the quality of life in these patients. Our previous studies indicated that salivary cells are able to form polarized 3-dimensional structures when grown on growth factor-reduced Matrigel. This basement membrane is rich in laminin-III (L1), which plays a critical role in salivary gland formation. Mitotically inactive feeder layers have been used previously to support the growth of many different cell types, as they provide factors necessary for cell growth and organization. The goal of this study was to improve salivary gland cell differentiation in primary cultures by using a combination of L1 and a feeder layer of human hair follicle-derived mesenchymal stem cells (hHF-MSCs). Our results indicated that the direct contact of mouse submandibular (mSMG) cell clusters and hHF-MSCs was not required for mSMG cells to form acinar and ductal structures. However, the hHF-MSC conditioned medium enhanced cell organization and multilumen formation, indicating that soluble signals secreted by hHF-MSCs play a role in promoting these features.


Assuntos
Células-Tronco Mesenquimais/citologia , Glândulas Salivares/citologia , Animais , Aquaporina 5/fisiologia , Diferenciação Celular/fisiologia , Feminino , Folículo Piloso/citologia , Humanos , Laminina/fisiologia , Células-Tronco Mesenquimais/fisiologia , Camundongos Endogâmicos C57BL , Ductos Salivares/citologia , Ductos Salivares/crescimento & desenvolvimento , Glândulas Salivares/crescimento & desenvolvimento , Glândula Submandibular/citologia , Glândula Submandibular/fisiologia , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...